Safety aspects of skin penetration of nanoparticles in topically applied cosmetics / pharmaceuticals

A. Patzelt, H. Richter, W. Sterry, J. Lademann

Center of Experimental and Applied Cutaneous Physiology (CCP)
Safety aspects of skin penetration of nano-sized particles

RISK??!!
Safety aspects of skin penetration of nano-sized particles

Potential risks of NP – a public debate

Principal human health risk may be from inhalation of NP!

Potential dangers may be from contact of NP with skin?
Safety aspects of skin penetration of nano-sized particles

Key questions

Do topically applied NP pose new risks when compared to traditional cosmetic products?

→ Material versus Size?

Do topically applied NP remain on the skin or do they pass the skin barrier and gain access to systemic compartments?

Which biological effects can be induced when NP enter the organism?
Are nano-sized particles able to cross the skin barrier?
Safety aspects of skin penetration of nano-sized particles

Penetration pathways

- intercellular
- follicular
- intracellular
Safety aspects of skin penetration of nano-sized particles

Investigation of intercellular penetration of titanium dioxide by tape stripping

Application of the emulsion Homogeneous distribution

Pressing the tape with a roller Removal of the adhesive film
Safety aspects of skin penetration of nano-sized particles

Penetration profile of titanium dioxide

Tape number

Relative thickness of the stratum corneum [%]

Concentration TiO$_2$ [µg/cm2]
Safety aspects of skin penetration of nano-sized particles

Skin after removal of 25 tape strips
Safety aspects of skin penetration of nano-sized particles

Position of hair follicles on tape strips with OsO₄ staining
Safety aspects of skin penetration of nano-sized particles

Detection of titanium dioxide on the removed tape strips in follicular areas
Safety aspects of skin penetration of nano-sized particles

Biopsy after application of titanium dioxide
Safety aspects of skin penetration of nano-sized particles

No penetration of titanium dioxide via the intercellular pathway into the living tissue

Tan et al., 1996
Landsdown and Taylor, 1997
Dussert and Gooris, 1997
Lademann et al., 1999
Pflücker et al. 2001
Schulz et al, 2002
Gottbrath and Müller-Goymann, 2003
Grontier et al. 2004
Mavon et al. 2007
Nohynek et al, 2007
etc.
Safety aspects of skin penetration of nano-sized particles

Penetration profile of titanium dioxide

Concentration TiO₂ [µg/cm²]
Safety aspects of skin penetration of nano-sized particles

Investigation of follicular penetration of NP
Safety aspects of skin penetration of nano-sized particles

Investigation of follicular penetration of NP

320 nm NP formulation non-particle containing formulation

Lademann et al., *Eur J Pharm Biopharm*, 2007, 66, 159
Safety aspects of skin penetration of nano-sized particles

Size dependency of follicular penetration of NP

Toll et al.

Lademann et al.

Vogt et al.
Safety aspects of skin penetration of nano-sized particles

Size dependency of follicular penetration of NP

![Graph showing the size dependency of follicular penetration of NP. The x-axis represents particle size in nanometers (nm), and the y-axis represents penetration depth in micrometers (µm). There are bars for particle sizes of 860 nm, 643 nm, 470 nm, 300 nm, 230 nm, and 122 nm. The bars show the penetration depth for each particle size. There are asterisks (*) indicating statistical significance with p-values. (*) p = 0.07, * p < 0.05.]
Safety aspects of skin penetration of nano-sized particles

Hair follicle pump
Safety aspects of skin penetration of nano-sized particles

Size dependency of follicular penetration of NP

Terminal hair follicle

Vellus hair follicle

Penetration depth [µm]

Particle size [nm]

860 nm 643 nm 470 nm 300 nm 230 nm 122 nm

0 200 400 600 800 1000 1200 1400

(*) p = 0.07

(*) p < 0.05
Safety aspects of skin penetration of nano-sized particles

Hair follicle targeting

Infundibulum:
1. transfollicular penetration
2. immunotherapy
topical vakzination

Sebaceous gland
1. Acne
2. Androgenetic Alopecia

Stem cells
1. regenerative medicine
2. wound healing
3. gene therapy

Matrix cells
1. control of hair growth
Safety aspects of skin penetration of nano-sized particles

Size dependency of follicular penetration of NP

Toll et al.

Lademann et al.

Vogt et al.
Safety aspects of skin penetration of nano-sized particles

Size dependency of follicular penetration of NP

Microparticles
750 nm
1500 nm

Safety aspects of skin penetration of nano-sized particles

Size dependency of follicular penetration of NP

<table>
<thead>
<tr>
<th>Author</th>
<th>Particle size</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ryman-Rasmussen et al., 2006</td>
<td>4.6 and 12 nm</td>
<td>QD penetrated through porcine skin, applied in alkaline solution</td>
</tr>
<tr>
<td>Gopee et al., 2006</td>
<td></td>
<td>QD penetrated only through mouse skin after dermabrasio</td>
</tr>
<tr>
<td>Baroli et al, 2007</td>
<td>5.9 nm</td>
<td>Metallic NP penetrated through skin, experiments in diffusion cell</td>
</tr>
<tr>
<td>Rouse et al, 2007</td>
<td>Fullerene particles</td>
<td>Fullerenes penetrated through porcine skin after skin flexing, experiment in diffusion cell</td>
</tr>
<tr>
<td>Vogt et al, 2006</td>
<td>40 nm</td>
<td>NP penetrated into the living tissue, after CSSS</td>
</tr>
<tr>
<td>Gopee et al, 2007</td>
<td>10, 30, 100 nm</td>
<td>No penetration in healthy porcine skin in vivo but in damaged skin</td>
</tr>
<tr>
<td>Zhang et al., 2008</td>
<td>ca. 40 nm</td>
<td>QD penetrated into upper SC layers in intact skin, reached living cells in damaged skin</td>
</tr>
</tbody>
</table>
Safety aspects of skin penetration of nano-sized particles

Skin damage enables skin penetration of NP

Safety aspects of skin penetration of nano-sized particles

Skin damage enables skin penetration of NP

Diffusion cell

NP

Receptor fluid

2500 µm

500 µm
Safety aspects of skin penetration of nano-sized particles

Summary

NP > 100 nm seem not penetrate through the intact skin barrier

NP < 100 nm: up to now, no evidence for penetration through intact skin

additional investigations have to be performed especially for NP < 10 nm
Safety aspects of skin penetration of nano-sized particles

NP as carriers for drug delivery
Thank you very much for your attention!

CHARITÉ

Department of Dermatology
Center of Experimental and Applied Cutaneous Physiology
Safety aspects of skin penetration of nano-sized particles

Long-term reservoir of NP in hair follicles

Fluorescence intensity [arb. units]

Particles
Non particle containing formulation

1st day
4th day
7th day
10th day
Safety aspects of skin penetration of nano-sized particles

Long-term reservoir of NP in hair follicles

Fluorescence intensity [arb. units]

- NP in stratum corneum
- NP in hair follicles

30 min | 1st day | 4th day | 8th day | 10th day

30 min: 100
1st day: 80
4th day: 55
8th day: 40
10th day: 20

Lademann et al., Eur Jour Pharm and Biopharm 2007, 66, 139