MicroRNAs: novel regulators in skin research

Eniko Sonkoly, Andor Pivarcsi

KI, Department of Medicine, Unit of Dermatology and Venerology
What are microRNAs?

- Small, ~21-mer RNAs

- 1993: The first miRNA discovered, Lin-4, regulated the developmental transitions in *Caenorhabditis elegans*

- The second microRNA was discovered 7 years later (2000)

- Today (October, 2008) we know more than **8000 miRNAs** (miRBase 12.0)

- The most abundant regulators of gene expression in the genome!

Lee et al., *Cell*, 1993
MicroRNAs: regulators of gene expression

- Regulate the expression of most protein-coding genes
- MicroRNAs inhibit gene expression at the post-transcriptional level
- Their function and importance can be compared to transcription factors
- Regulate basic biological processes
 - Apoptosis
 - Morphogenesis
 - Proliferation
 - Metabolism
 - Signal transduction
 - Determination of cell fate
 - Developmental timing
MicroRNA biogenesis and mode of action

- Encoded in the genome
- Transcribed from DNA as pri-microRNA
- Processed into pre-microRNA in the cell nucleus
- In the cytoplasm they are processed into the mature microRNA
- Mature microRNA form complexes with the 3’ UTR (untranslated region) of target mRNA and
- Suppress their translation/induce their degradation
The emergence of miRNAs will not make the understanding of regulatory networks easier...

• Each miRNA regulates more than one gene

• Each gene is regulated by more than one miRNA

• Many miRNA targets are transcription factors – miRNAs regulate the regulators

• MiRNA expression is regulated by transcription factors

• The potential regulatory effect of miRNAs is enormous

Modified from George Calin, MD PhD
Abnormal miRNA expression can cause diseases

- Altered miRNA expression was first implicated in cancers
- MiRNAs may act as
 - tumor suppressors (i.e. miR-16, let-7s)
 - oncogenes (i.e. miR-155, miR-21)
- MiRNAs regulate proliferation, apoptosis and angiogenesis
- In the past few years miRNAs have also been implicated in developmental and metabolic diseases
Why study the skin?

- The largest organ (Surface area 1.5 - 2 m²; ~9 kg)

- Common and severe diseases
 - Inflammatory diseases (psoriasis, atopic eczema)
 - Tumors (BCC, SCC)
 - Genetic disorders (Xeroderma pigmentosum, ichthyosis)
 - Bullosus

- A handy model for other diseases
 - Easily accessible
 - Skin Immune System (SIS) — Inflammation
 - Carcinogenesis
 - Morphogenesis
Do microRNAs have a role in psoriasis?

- Is there a set of microRNAs that distinguishes healthy skin from psoriasis skin?
- If yes, which are those microRNAs?
- Does microRNA deregulation play a role in psoriasis?
Psoriasis has a specific microRNA expression profile

- Genome-wide analysis of miRNA expression using an array with LNA probes showed that:
 - A set of microRNAs is expressed in human skin
 - Healthy skin, atopic eczema lesion and psoriatic lesions display distinct microRNA expression profiles

<table>
<thead>
<tr>
<th>miRNA</th>
<th>Psoriasis</th>
<th>Fold change</th>
<th>Atopic eczema</th>
<th>Fold change</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-148b</td>
<td>4.88</td>
<td>3.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-29a</td>
<td>4.56</td>
<td>2.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-146a</td>
<td>4.09</td>
<td>3.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-20a</td>
<td>3.91</td>
<td>3.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-20b</td>
<td>3.17</td>
<td>2.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-155a</td>
<td>3.75</td>
<td>3.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-155b</td>
<td>3.24</td>
<td>2.17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sonkoly et al., PloS One, 2007
miR-203 is specifically overexpressed in psoriasis

- **miR-203** and miR-146a are overexpressed in psoriasis but not in atopic eczema
- **miR-21** is overexpressed and **miR-125b** is suppressed in both diseases
- **miR-146** and miR-125b was recently implicated in the regulation of TLR-signaling
- **miR-203**: potential functions - unknown

Sonkoly et al., PLoS ONE, 2007
miR-203 is a skin-specific microRNA

- Highest expression in the skin
- Also expressed in the esophagus
- A role in the differentiation of squamous epithelia?

Sonkoly et al., PLoS ONE, 2007
miR-203 is a keratinocyte-specific microRNA

- Keratinocyte-specific expression
- Higher expression in the upper, more differentiated cell layers
- Increased expression in the epidermis of psoriasis lesions

Sonkoly et al., PLoS ONE, 2007
miR-203 is regulated during differentiation
miR-203 targets Suppressor of Cytokine Signaling-3 (SOCS-3)

- Predicted binding site for miR-203 in the 3’UTR of SOCS-3 gene
- Suppression of SOCS-3 in psoriasis lesions
- Mutually exclusive staining pattern of miR-203 and SOCS-3 in the epidermis
- Significant repression of the reporter in a luciferase assay
- Suppression of SOCS-3 may result in elongated/increased inflammatory response

Sonkoly et al., PLoS ONE, 2007
What is the relevance to cosmetics?
- Potential applications

microRNA inhibitor

microRNA

microRNA mimic

DNA → Transcription → RNA → mRNA → Translation → Protein

Reduced skin inflammation?
• microRNA expression patterns distinguish psoriasis from healthy skin and atopic eczema

• miR-203 is a skin- and keratinocyte-specific microRNA

• Its up-regulation in psoriasis is concurrent with the down-regulation of its target, SOCS-3

• a new layer of regulatory mechanisms is involved in the pathogenesis of chronic inflammatory skin diseases
Acknowledgements

Eniko Sonkoly
Tianling Wei
Mona Stähle
Molecular Dermatology Research Group,
Dermatology and Venerology Unit,
CMM, Karolinska Institutet, Sweden

Annika Säåf
Gunnar Norstedt
Dept. of Molecular Medicine and Surgery,
CMM, Karolinska Institutet, Sweden

Elizabeth Pavez Lorie
Hans Törmä
Dept. Of Dermatology,
Uppsala University, Sweden

Lena Lundeberg
Maria Tengvall-Linder
Annika Scheynius
Dermatology and Venerology Unit /
Clinical Allergy Research Unit,
Karolinska Institute, Sweden

Peter C. Janson
Ola Winquist
Clinical Allergy Research Unit,
Karolinska Institute, Sweden

Bernhard Homey
Dept. Of Dermatology
Heinrich-Heine University
Dusseldorf, Germany

Harri Alenius
Finnish Institute of Occupational Health
Helsinki, Finland

Contact info:
Eniko.Sonkoly@ki.se
Andor.Pivarcsi@ki.se