

ECVAM efforts in nano- and biotechnology Thomas Hartung & ECVAM Team

Institute for Health and Consumer Protection (IHCP)
Ispra (Va), Italy

http://ecvam.jrc.it

Biologicals

- Meeting with EDQM and WHO March 2005:
 Identify methods to replace intracerebral challenge in Kendrick test (potency testing of whole-cell pertussis vaccines)
 - Start of 2 ECVAM studies to optimise serological tests
- Start of pyrogenicity peer review process end of June 2005
- ECVAM/DG SANCO workshop on 3Rs Approaches in Marine Biotoxin Testing – draft report in consultation with experts
- Scientific advice to CRL (Vigo) on prevalidation of functional assay for PSP testing
- Botulinum toxin: ECVAM in contact with EDQM regarding meeting with manufacturers, workshop with ICCVAM planned
- Comments on Ph.Eur. Monographs published in Pharmeuropa

Biologicals as door-openers for a new safety toxicology for pharmaceuticals?

- Today 50% of new drugs are biologicals (e.g. recombinant proteins, antibodies)
- Classical safety toxicology is useless
- Biologicals have failed because of sideeffects in studies and clinical use
- A predictive toxicology e.g. based on human cells is urgently required

ECVAM Research activities

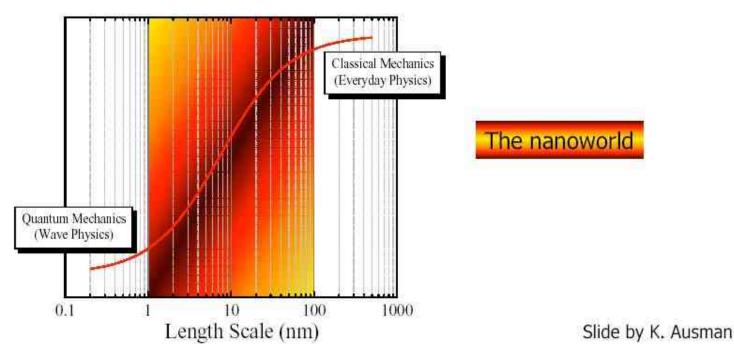
Coaching and steering of DG RTD projects

•	IP ReProTect	started 7'04
•	IP A-Cute-Tox	started 1'05
•	IP Sens-it-iv	start 10'05
•	STREP Predictomics	started 9'04
•	STREP ToxDrops	started 1'05
•	STREP Vitrocellomics	start 11'05
•	Marie-Curie PulmoNet	started 4'05

Impact: Total funding > 40 million Euro, > 120 partner institutions

Own research

- Link to other units (ECB, PCE, BMS, GMO)
- Ecotoxicology test strategy (with ECB) validated 9'05 (potential of saving 60% of fish for acute ecotox.)
- Cancer assay now under validation
- 8 Ph.D. (Adler, Boveri, Dodevich, Gartlon, Hoffmann Kinsner, Pellizzer, Malerba)
- About 50 original publications per year including Nature and PNAS, reports/reviews/citations in Nature, Science, Scientific Americance



Why is Nano Different?

At the micron and larger scale, classical physics determines properties.

- At the Angstrom (0.1 nm) scale, quantum mechanics determines properties.
- At the nanometer scale, fundamental properties depend on exactly how big the particle is.

From K.M.Kulinowski, Nanotechnology "The Big Science of the Very Small", CBEN

ipcp

Type of exposure to metallic nanoparticles

Environmental

- Emission from automotive catalytic converters (Pt⁰ on Al₂O₃, CeO₂ on Co)
- Cosmetic (sunscreen, TiO₂ ultrafine), ceramic, textile, semiconductor industries (CeO₂, ZnO, SiO₂, Ag on TiO₂, ZrO₂, Ag, Au, Pt)....

Occupational

 Large scale preparation of nanoparticles (tons of carbon nanotubes, Co₃O₄/Fe₂O₃)....

Biomedical

• Tumor diagnosis and therapy (ultrafine TiO_2 as killing compound of cancer cells by UV light), quantum dots (CdSe), supermagnetic Fe for diagnosis, Ag in catheters (antimicrobic action)

Towards a European Strategy for Nanotechnology

On the 7th June 2005, the European Commission adopted the Action Plan "Nanosciences and nanotechnologies: An action plan for Europe 2005-2009" (COM(2005) 243) ...

How to ensure that nanotechnology is safe?

- Applications of nanotechnology must ensure a high level of public health, safety, consumer and environmental protection.
- Any risks must be addressed upfront and as an integral part of the R&D process.
- Specific toxicological studies for e.g. nanoparticles are underway at EU and national level.

In Vitro nanotoxicology research on manufactured nanoparticles

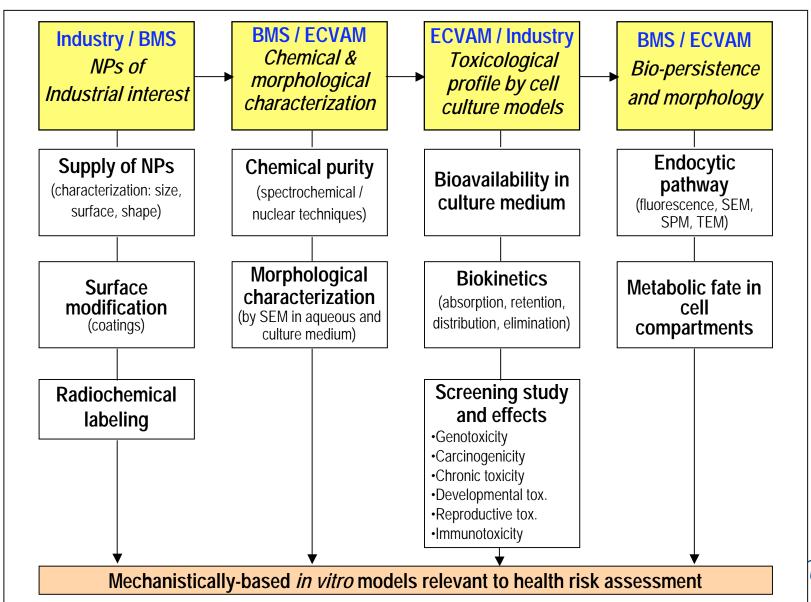
Since 2003

- Starting of the *In vitro* NAno TOXicology (INATOX) project (development of multidisciplinary methodology to understand the "nanosafety" and interaction of NP with cells, subcellular structures and biomolecules (ECVAM/BMS Units))
- 6 Contributions, support to DGs (RTD, Sanco)
- 8 International Conferences/Workshops, 5 Invited Seminars at Universities
- Partnership of Integrated (NANOIMPACT, INTELTEX) and STREP (Cellnanotox, DIPNA) projects
- Workshop on Health Effects on Nanoparticles (first part of 2006)

In vitro nanoparticles mechanistically-based toxicology research at the JRC

Cellular models used at ECVAM Unit Exposure to manufactured nanoparticles **Toxicokinetics Basal** (uptake, intracellular Genotoxic/carcinocytotoxicity/other distribution, genic potential molecular end biotransformation, points binding to biomolecules)

Advanced analytical, physical, biochemical methods/facilities

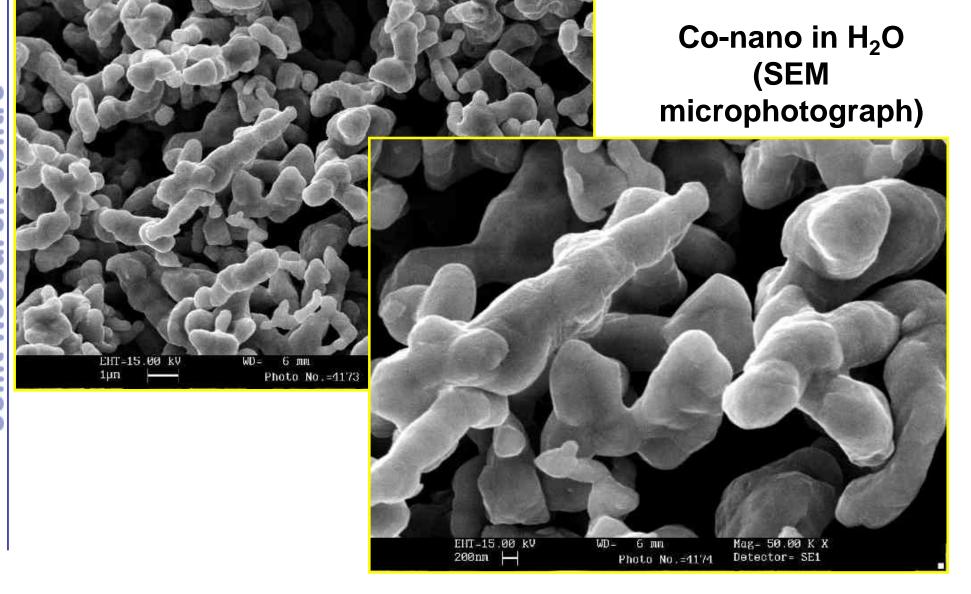

culture/molecular

hiology techniques

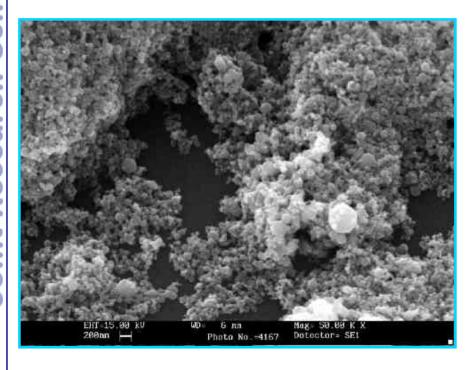
In vitro NAnoTOXicology research (INATOX) project

ECVAM

Metallic nanoparticles at ECVAM

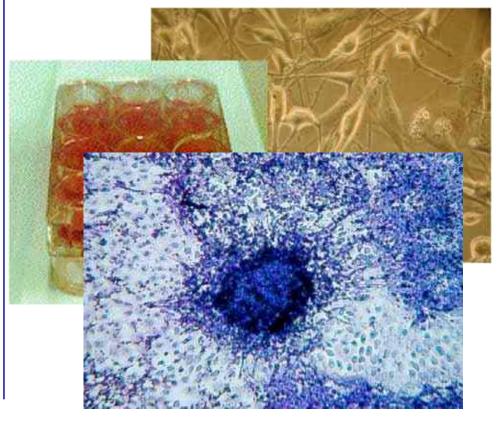

(University of Modena and Colorobbia Group suppliers)

Nanoparticle	Mean size (nm
Ag ⁰	20
Au ⁰	12
Co ⁰	50-100
CoFe ₂ O ₄	15
	15
Cr antimoniate	20
Ni ⁰	62
Pt ⁰	5
SiO ₂	20-160
TiO ₂	3; 20-30; 20-160
TiO ₂ (Ag coated)	3
TiO ₂ Sb ₂ O ₃ Cr ₂ O ₃	15
ZrO ₂	2; 5-30



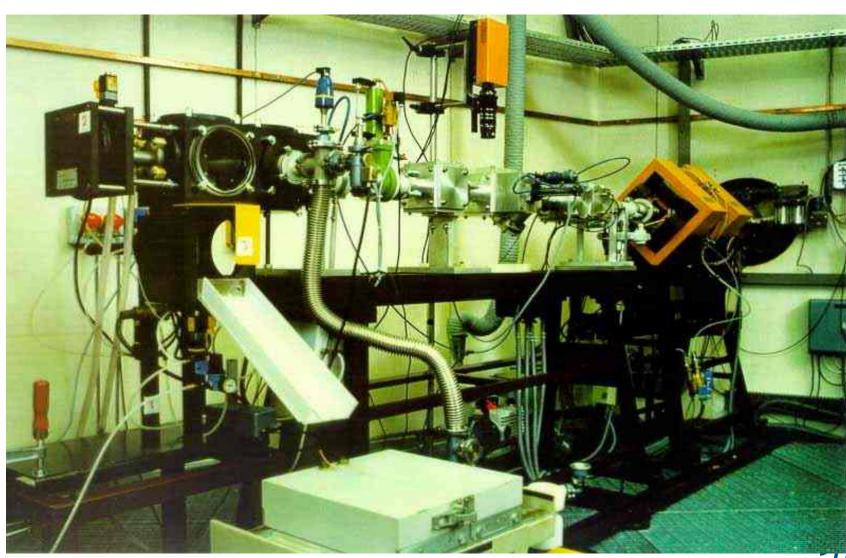
TiO₂-nano in H₂O (SEM microphotograph)

ZrO₂-nano in H₂O (SEM microphotograph)

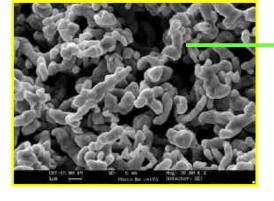


1st study involving EU, USA & Japan

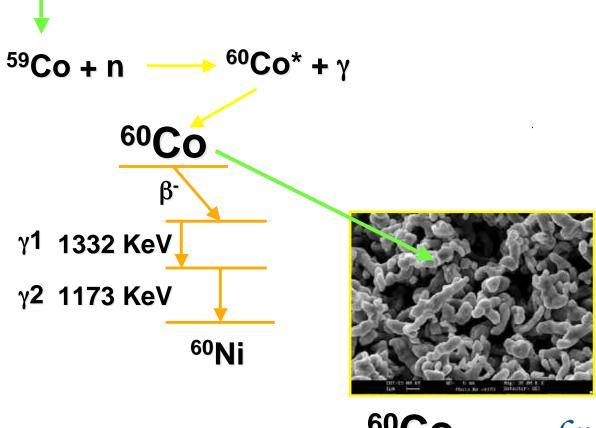
In vitro Cell Transformation Assay


Prevalidation initiated in 11/2004

The beam line for the production of carrier-free radiotracers



"Radiolabelling" di Co-nano



Neutron activation

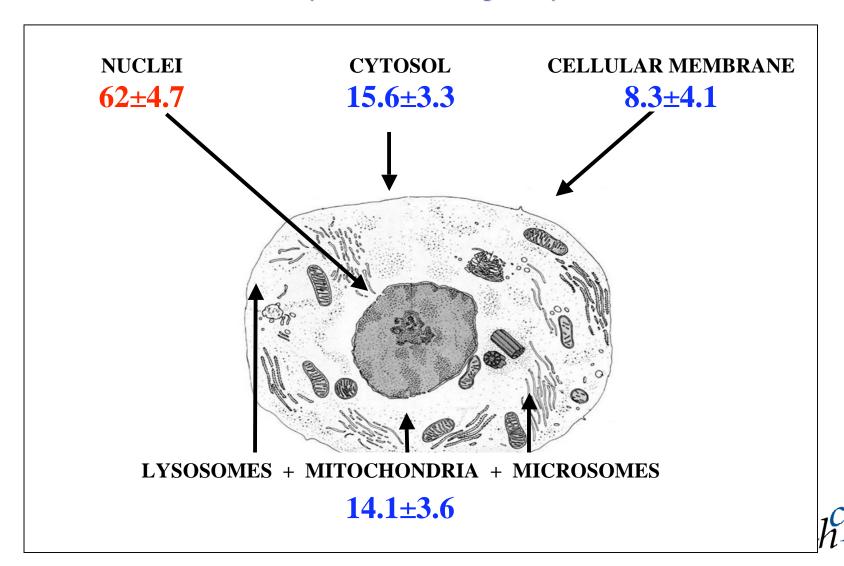
HFR reactor

Co_{nano}

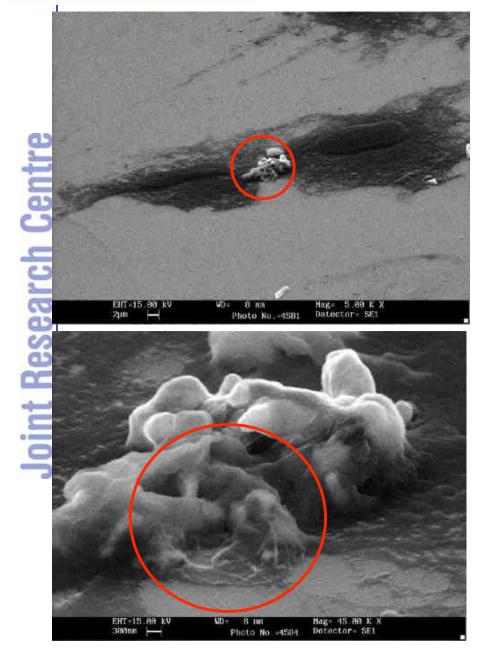
⁶⁰Co_{nano}

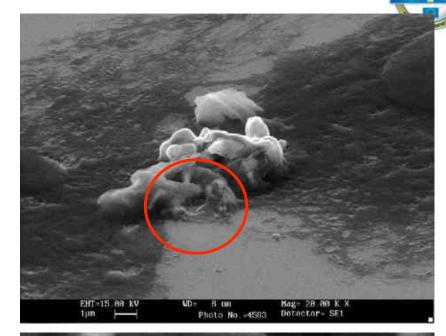
Uptake of cobalt in BALB/3T3 cells exposed simultaneously to ⁵⁷Co_{sol} and ⁶⁰Co_{nano} for 4h

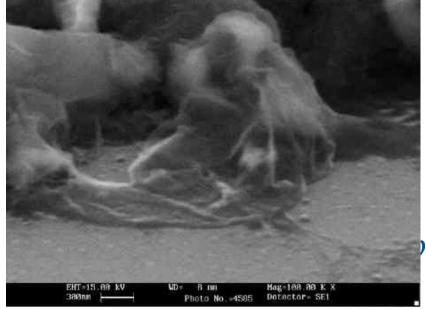
Concentration (µM)	fgCo·cell ^{-1(a)}		
⁶⁰ Co _{nano} and ⁵⁷ Co ²⁺	⁶⁰ Co _{nano}	⁵⁷ Co ²⁺	
1	120	0.1	
5	720	1.0	
10	1900	2.2	
30	7300	13.3	
50	10000	26.8	
70	15000	31.1	
100	17385	27.4	


(a): mean of 3 experiments; RSD<11%.

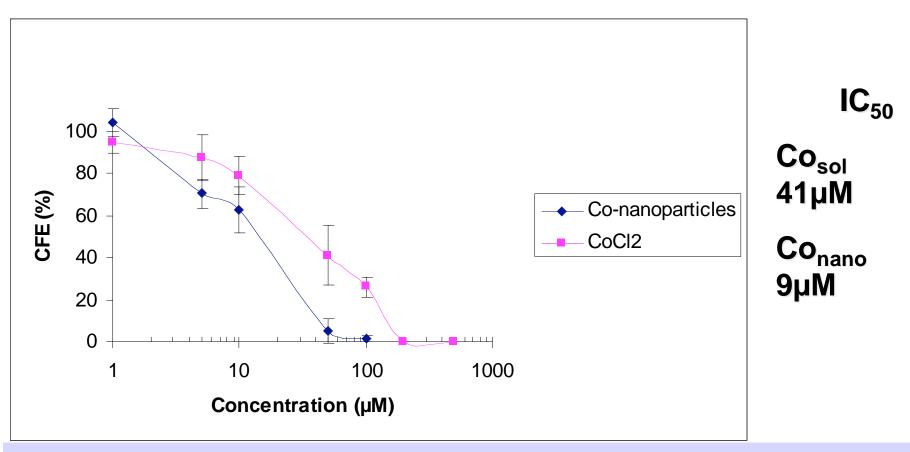
Conclusion: obvious different accumulation of Co from Co-nano and Co-sol






Intracellular distribution of Co in Balb/3T3 cells exposed for 4h to 100µM of 60Co-

EUROPEAN COMMISSION DIRECTORATE-GENERAL Joint Research Centre SEM of Balb/3T3 cells, 100µM Conano



Cytotoxicity induced by Co-sol and Co-nano in Balb/3T3 cell line at 4h exposure

Conclusion: quantitative difference of the induced cytotoxic effect

In Vitro nanotoxicology research on manufactured nanoparticles

The future ...

- Full integration of alternative (non animal) methods into "An Integrated and Responsible Approach" concerning a R&D European Strategy for Nanotechnology.
- Creation of a Key Area at ECVAM

Acknowledgements

Marlies Halder

External partners

Taskforce Biologicals

Enrico Sabbioni

Salvador Fortaner

Massimo Farina

Riccardo Del Torchio

Stefano Bosisio

Jessica Ponti

Barbara Munaro

Susan Salovaara

François Rossi

Takao Sasaki

Antonietta Gatti

James Kirkpatrick

Lucia Migliore

Mario Di Gioacchino

Paolo Boscolo

Ricard Marcos

Giorgio Tettamanti

Colorobbia srl

