Self Organising NanoStructures: an alternative strategy for directed enzyme-prodrug therapies

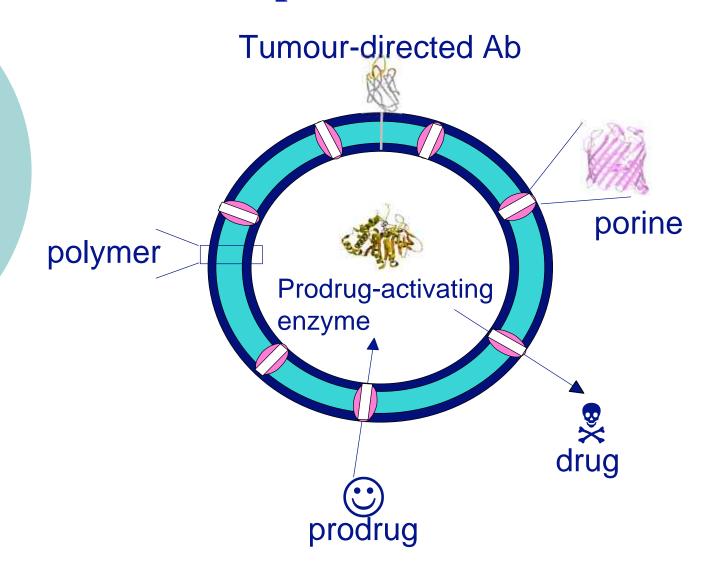
By An Ranquin
Department of Molecular and Cellular Interactions
VUB/VIB 6

Topics of the presentations

- SONS as therapeutic nanoreactors in our lab
- SONS in other applications

Problems encountered in chemotherapy today:

- Insufficient drug concentrations in the tumour
- Systemic toxicity of drugs
- Lack of selectivity for tumour cells of drugs
- Drug-resistant tumour cells


Ways to overcome these problems:

- Alternative drug formulations:e.g. PLD
- Resistance modulation:e.g. PSC833
- Antidote/toxicity modifiers:e.g. Dexrazoxan
- Targeted enzyme-prodrug therapy

Types of enzyme-prodrug therapies:

- Antibody-directed enzyme-prodrug therapy (ADEPT)
- Antibody-directed abzyme-prodrug therapy (ADAPT)
- Gene-directed enzyme-prodrug therapy (GDEPT)
- SONS as therapeutic nanoreactors

SONS as therapeutic nanoreactors:

Advantages over other enzyme-prodrug strategies:

- Shielding of the enzyme from the environment
- High enzyme concentration/bound antibody

1. Polymer:

Types of polymers that self assemble in lamelar structures:

- Biopolymers: peptide-based
- Diblock copolymers: lipid-like
- ■Triblock copolymers: ABA or ABC

pMOXA-pDMS-pMOXA

1. Polymer:

Characteristics of block copolymers:

- Low critical micelle concentration (CMC): slow monomer/multimer exchange rate
- •long blocks: up to 10-20 nm
- Tuneable phase behaviour: thermal or pH responsive

2. Nucleoside hydrolase (NH) as prodrug activating enzyme:

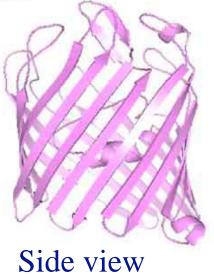
Enzymatic reaction

Highly specific towards the ribose moiety, not present in mammals!!!!

2. Nucleoside hydrolase (NH) as prodrug activating enzyme:

NH T.vivax: different substrates and their kinetic values

		K_{cat} (s ⁻¹)	K _M (μM)	
	Inosine	5.19	5.37	
	Guanosine	2.31	2.33	
	Adenosine	2.58	8	
	2F-adenosine	1.86	39.05	
	2Cl-adenosine	1.97	2.7	
	6-methyl purine	4.3	<10	


3. Porines:

Origin:

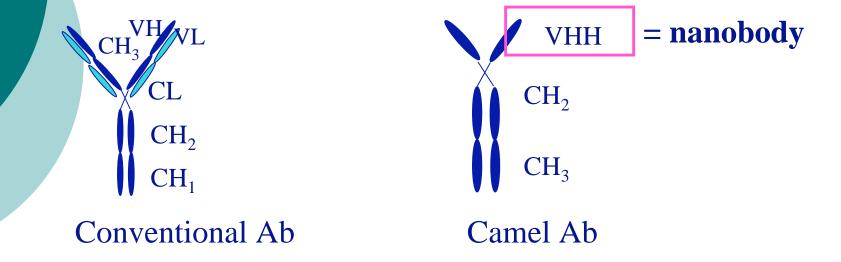
Outer membrane proteins of gram negative bacteria, e.g. OmpF, PhoE, LamB, Tsx,...

Structure:

β-barrel

Top view

3. Porines:

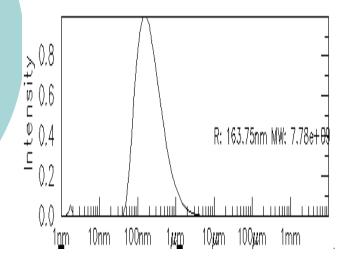

Types of porines:

- Non specific porines: e.g. OmpF
 Serves as a molecular sieve, allowing transport of solutes < 600 Da
- Specific porines: e.g. Tsx (nucleoside specific)

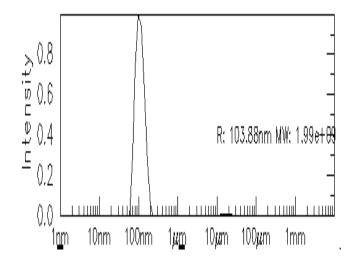
Has a binding site for a specific solute, allowing diffusion at very low solute concentrations

4. Tumour associated antibodies:

Single chain camelid antibodies


Nanobodies directed against: CEA, EGFR

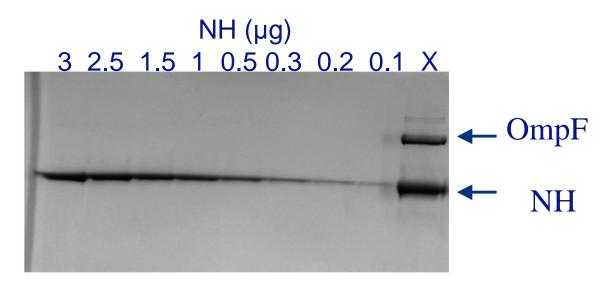
1. Production of the nanoreactors:


- Dissolve 10 % (wt/v) of polymer and porine (10 or 100 μg/ml) in ethanol
- Dry to form a lamellar film
- Rehydrate in NH-solution
- Extrude through 200 nm polycarbonate filter
- Remove non encapsulated NH by gelfiltration or Ni-Nta

1. Production of the nanoreactors:

DLS measurements

Before extrusion



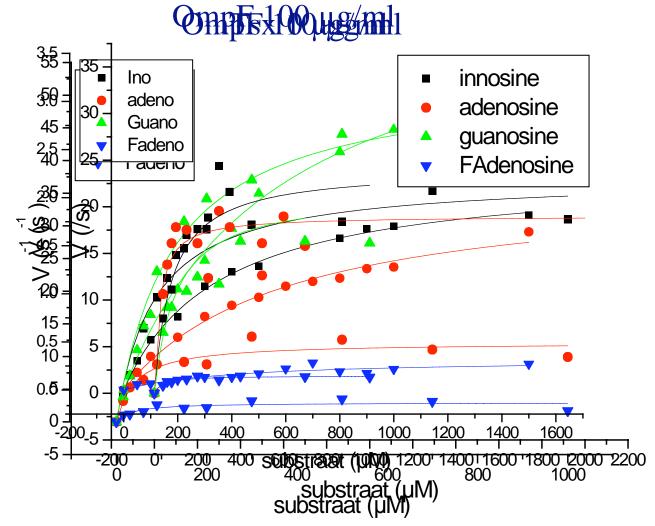
After extrusion

Narrow size distribution, mean size 100 nm

2. Encapsulation efficiency:

SDS-PAGE analysis

Encapsulation efficiency = 15.4 %


3. Activity of the nanoreactors:

Colorimetric assay

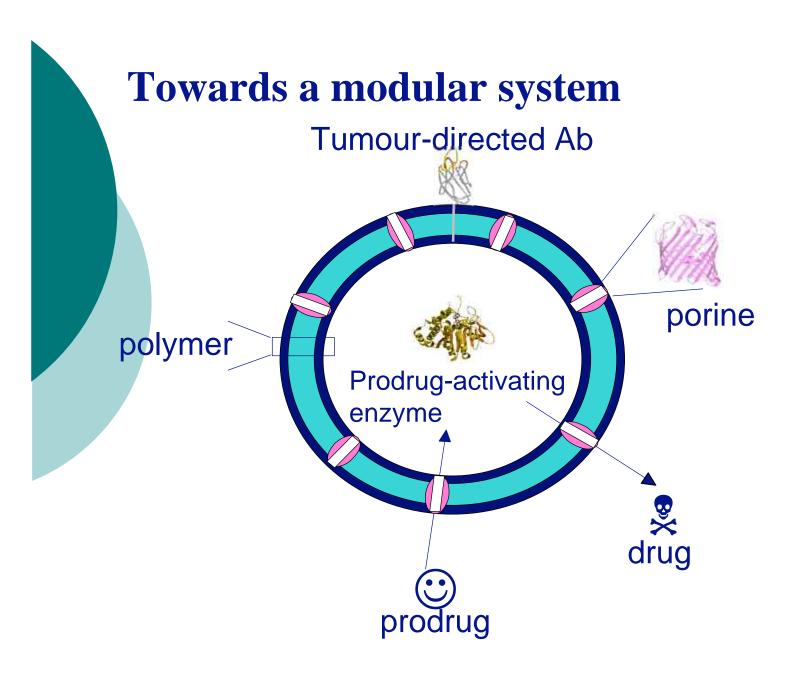
Ribose +
$$Cu^2$$
 + Cu^+ - Cu^+ - neocuproin - Absorbs at neocuproin 450 nm

- Measure the turn over rate from substrate to product
- Plot the turn over rate in function of the substrate concentration
- Fit to a Michaelis-Menten equation

3. Activity of the nanoreactors:

Future work

1. Coupling of the antibodies


S-S bridges between Ab and the nanoreactors

2. In vitro

- Activity in serum
- Fagocytosis by macrophages
- Proliferation of tumour cells

3. In vivo

- Biodistribution
- Immunogenicity
- Tumour proliferation

1. Drug carriers:

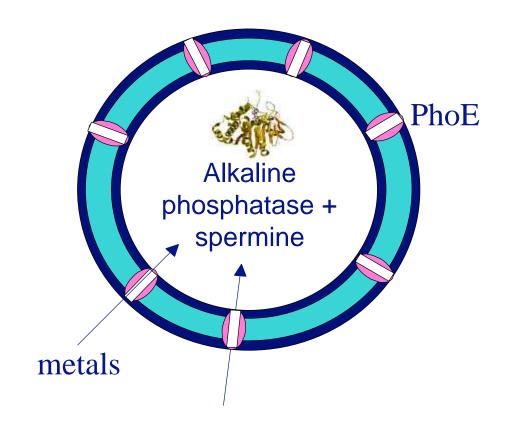
- Load SONS with drugs
- (optional) Target SONS with Ab
- Higher bioavailability and specificity

2. Induction of apoptosis:

- Encapsulation of caspases
- Targeting to tumorcells

3. As a diagnostic tool:

Classic immunoassay


- For the detection of antigens involved in bacterial/viral infections and tumour development
- Ab directed against these antigens used for detection
- Enzyme (horseradish peroxidase) used to amplify the signal

3. As a diagnostic tool:

Improving the immunoassay by using SONS

- SONS are coupled to the detecting Ab
- SONS are permeabilised by porines
- SONS are loaded with signal amplifying enzyme
- Higher amplification of the signal
- Early detection possible

4. Precipitation of heavy metals:

PNP

- 5. Gene and RNAi delivery vectors:
- Health risks of viral delivery vectors
 - Isertional mutagenesis
 - Viral infections
 - Host immune response
- Targeting of SONS to organs
 - Antibodies
 - Ligands to organ specific receptors
 - Bacterial adhesins

6. As an Imaging tool:

- Incorporate fluorescent dyes in SONS
- Target the SONS through Ab
- Imaging through fluorescent microscopy
 - → Lower detection limit

7. Immunotherapy:

- Load SONS with tumour-specific antigen
- Target to dendritic cells for correct presentation in combination with MHCI/MHCII
- Stimulation of CD8+ en CD4+ cells

Acknowledgements

Department of Molecular and Cellular Interactions VUB/VIB 6

Jan Steyaert

Patrick Van Gelder

Kris Pauwels

Klaas Decannière

Annelies Vervoort

Wim Versées

An Vandemeulebroucke

. . .

Department of Physical Chemistry, University of Basel, Switzerland

Wolfgang Meier Alexandra Graff Samantha Benito