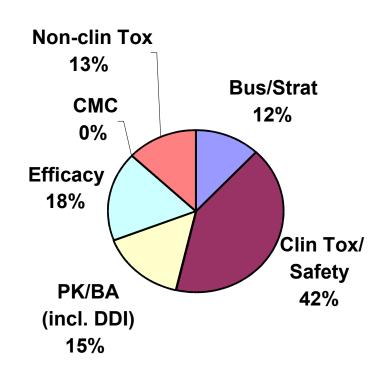
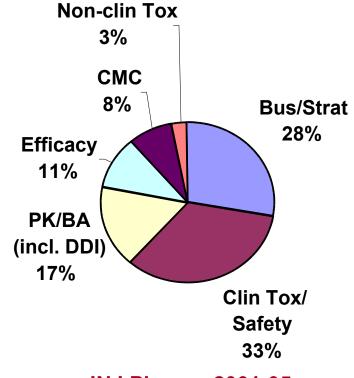

What do we really have versus what is really needed?

The Industry-View

Philippe Vanparys, PhD
Johnson & Johnson Pharmaceutical Research & Development
Beerse, Belgium




New test models and lower attrition rate of drug candidates can help to address the "Pharma Innovation Gap"

Primary reasons for discontinuation in Phase I

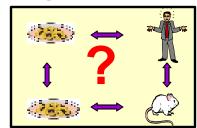
JNJ Pharma 2001-05 n=18

PBF* Benchmark 2000-04 n=195 (incl. JNJ, excl. reasons <10%)

*Pharmaceutical Benchmarking Forum: Abbott Labs, Amgen, AstraZeneca, BMS, Lilly, GSK, J&J, Merck, Novartis, Pfizer, Roche, Schering-Plough

Safety findings J&J Pharma: ~33% of Phase 1 terminations

Reason for discontinuation	Frequency							
after starting clinical studies	Preclinical	Clinical						
	findings	findings (Phase I)						
Cardiotoxicity	1	3						
Hepatotoxicity	0	3						
Nephrotoxicity	0	1						
IV irritation	0	1						
Skin rash	0	1						


➤ Hepatotoxicity accounts for 27% of drugs withdrawn from the market in the period 1960-2002.

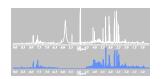
Need for better in vitro and in vivo liver toxicity test models

Define new and better testing strategies

Make better use of existing regulatory test models

Develop new in vitro and in vivo test models

Try to get more with less animals


Implement HTS models for compound selection

Know more earlier

Integrate new techniques to define the mechanism of action

"Think out of the box"

"Discovery consists in seeing what everyone else has seen and thinking what no one else has thought" Albert Szent-Gyorgi (1893-1986)

New in vitro models: cytotoxicity testing

Pfizer study [O`Brien et al. Arch. Toxicol, 2006; 80 (9): 580-604]

➤ 611 compounds tested in vitro on HepG2 cells (48h incubation; 7 parameters)

42 severely human hepatotoxic compounds

283 moderately human hepatotoxic compounds

286 non-toxic drugs

		Sensitivity	Specificity	
	1 DNA synthesis	10	92	
	2 Protein synthesis	4	97	
27274	3 Gluthathione depletion	19	85	
0.0	4 Superoxide induction	1	97	
	5 Caspase-3 induction	5	5	
	6 Membrane integrity	2	99	
	7 Cell viability	10	92	
	Combination of above tests 1,3, 7	25	83	

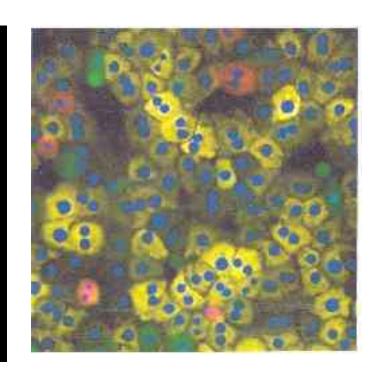
Late indicators of cell stress ►LDH, NR **ATP** (J&JPRD)

High need for improved cytotoxicity assays

Regulatory animal toxicity studies

52

-


Pfizer study [O'Brien et al. Arch. Toxicol, 2006; 80 (9): 580-604]

Tested 4 fluorophores in HepG2 for 3 days

- •Hoechst33342: nuclear size and cell number: nuclear shrinkage is hallmark of apoptosis. (late stage cytotox parameter).
- •Fluo-4 AM: intracellular free calcium: early indicator of cell stress.
- •TMRE: mitochondrial membrane potential: indicator of respiratory capacity of the cell (very early cytotox marker)
- •TOTO3: plasma membrane permeability: late stage tox indicator (post mortem)

243 drugs

- Sensitivity for human toxicity increased to 93%
- * Specificity for human toxicity increased to 98%

Results of a follow-up study by J&JPRD at CEREP

- The cytotoxicity assays with new parameters in HepG2 cells seem to be superior to classic cytotoxicity assays (LDH, ATP, neutral red, MTT, AlamarBlue, ...)
- In most of calculated IC_{50s}, the mitochondrial membrane potential was the most sensitive parameter
- Lowest IC_{50s} with the new parameters are always lower than the in house IC_{50s} values with LDH, NR and ATP
- Some evidence that the Lowest Toxic Concentration (LTC) is more predictive than the IC_{50}
- When the compounds are ranked according to their Therapeutic Index [TI = LTC/Cmax], a better prediction to hepatotoxicity is obtained.

Results (2)

How predictive is this assay?

Currently database of 186 compounds (internal data, Cerep data, published

Cerep data).

	LTC<10	/ LTC<30 \	LTC<100	TI<10	TI<30	TI<100
	µM	μM	µM	LTC	LTC	LTC
Severely hepatotoxic (42)	14+	24+	29+	31+	36+	42+
	28-	18-	13-	11-	6-	0-
	=33%+	=57%+	=69%+	= 74%+	= 86%+	=100%+
Moderately hepatotoxic (60)	26+	35+	48+	37+	49+	53+
	34-	25-	12-	23-	11-	7-
	=43%+	=58%+	=80%+	= 62%+	= 82%+	= 88%+
Toxic to other organs (48)	22+	29+	39+	27+	37+	42+
	26-	19-	9-	21-	11-	6-
	=46%+	=60%+	=81%+	= 56%+	= 77%+	= 88%+
Non-toxic drugs (36)	3+	4+	14+	1+	1+	4+
	33-	32-	22-	35-	35-	32-
	=8% false+	=11% false+ /	=39% false+	=3% false+	=3% false+	=11%false+

Results (3)

How predictive is this assay?

Internal classifier LTC

(LTC	<30 μM = cyto	otoxic)
	Liver toxi	c in viv
	ves (*)	no

		yes (^)	no
Cytotoxic	yes	59	FP 4
in vitro	no	43 FN	32

(*): Significant/Moderate Human Hepatotoxic

	%	
Sensitivity	58	
Specificity	89	
Concordance	66	

Internal classifier TI (TI < 30 = cytotoxic)

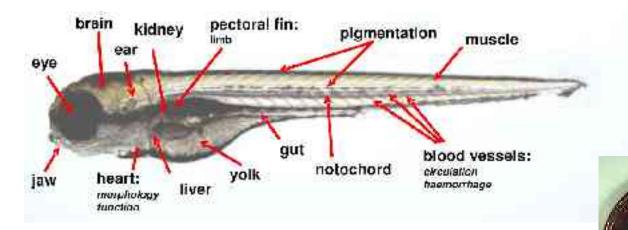
		Liver toxi	c in vivo
		yes (*)	no
Cytotoxic	yes	85	FP 1
in vitro	no	17 FN	35

(*): Significant/Moderate Human Hepatotoxic

	%	
Sensitivity	83	
Specificity	97	
Concordance	87	

Pfizer study: sensitivity with conventional parameters was only 25%

Conclusion on cytotoxicity testing


Sensitivity improved by using other parameters and by looking to the data in a different way.

New in vivo test models: the zebrafish (1)

- physiology and development parallels that of mammals
- optical transparency of the larvae makes real time observations of its internal organs simple

are small and inexpensive to maintain

The zebrafish as test model (2)

▶ larvae can live several days in a single well of standard 24, 96 or 384 well plates surviving on nutrients stored in their yolk sac

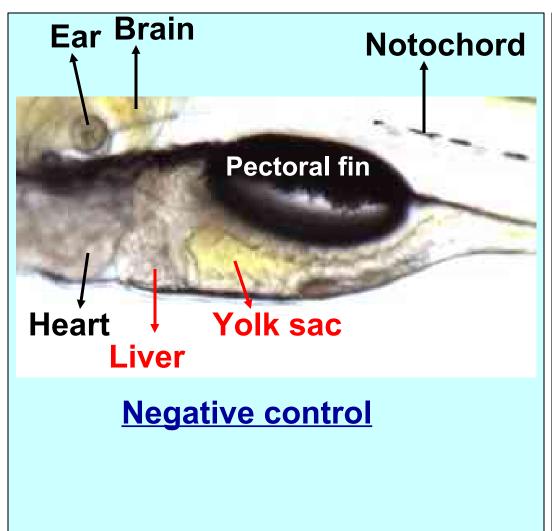
lays post

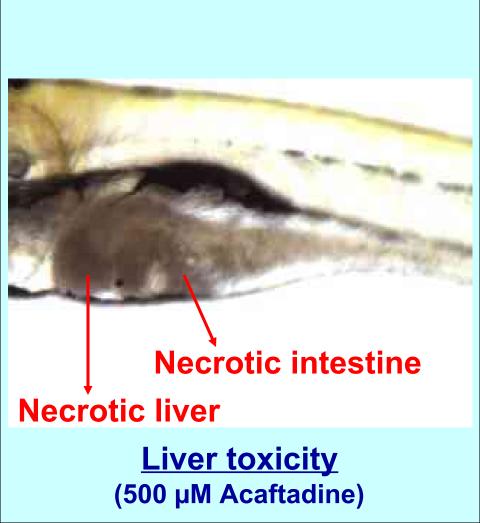
Zebrafish larvae at 6 days post fertilization in a 96-well plate

- easily bred in large numbers (a single pair of adults can routinely lay hundreds of fertilized eggs in a single morning)
- ➤ larvae absorb compounds in the surrounding water (Danieau's solution) through their skin and gills
- the liver constitutes 9% of the biomass
- compounds are solved in fish water or DMSO (tolerate up to 1.5% DMSO)

Zebrafish as test model (3)

Test design: phenotypic screen for hepatotoxicity


- Concentrations: 0.5, 5, 10, 50, 100 and 500 μM
- 14 larvae per concentration
- Dosing takes place at 96 hpf (day 4) at which time the liver is fully developed
- Assessment for liver toxicity at 144 hpf
- Embryos are screened using a stereo dissecting microscope for the following endpoints:
 - Liver necrosis
 - Changes in size and shape of the liver
 Yolk abnormality (yolk sac oedema)
 Lethality



Test design (2)

Results (1)

Name	Pharmacological	Hepatotoxic in mammalians	Hepatptotoxic
	activity		in zebrafish
Lusaperidone	Antidepressant	Monkey and human hepatotoxic	
Clofibrate	PPAR-alfa	Rat and a few cases in humans	ATN
Oxyphenisatin	Laxative	Human hepatotoxic	
Ketoconazole	Antifungal	Rat hepatotoxic	(*)
Itraconazole	Antifungal	Rat hepatotoxic	
Ridogrel	Thromboxanesynthetase inh.	Rat hepatotoxic; not human hepatotoxic	
Acaftadine	Anti-histaminic	Rat hepatotoxic	
NCE 1	V1a-antagonist	Rat hepatotoxic	ATN
NCE 2	CRF-1 antagonist	Monkey & human hepatotoxic; neg. in rat & dog	
Amiodarone	Antiarrhythmic	Severely human hepatotoxic	
Danazol	Steroid hormone	Severely human hepatotoxic after metabolisation	
Valproate	Anticonvulsant	Severely human hepatotoxic after metabolisation	(*)
Furazolidone	Antibiotic	Moderately human hepatotoxic	
Tamoxifen	Estrogen receptor modulator	Mod. human hepatotoxic after metabolisation	
Troglitazone	PPAR-gamma activator	Human hepatotoxic	
HP-Beta-CD	-		
NCE 3	Antiviral		
Sucrose	-		
Gentamycin	Antibiotic	Not hepatotoxic but nephrotoxic and ototoxic	
Praziquantel	Anthelmintic		
Biotine	Vitamin H		
		ATN: Additional Testing Needed	Negative

(*): Bioanalysis needed to prove bioavailability

Results (2)

Phenotypic screen only (19 compounds)

		Liver to rodents and/	
		yes	no
Liver toxic	yes	10	FP 3
in zebrafish	no	3 FN	3

	%	
Sensitivity	77	
Specificity	50	
Concordance	68	

Results (3)

Compound		Concentration (μM)										Conclusion				
	0.5	5	7.5	10		20	25	30	50	75	100	200	300	500	1000	
Amiodarone											P			Р		
Danazol																
Troglitazone																
Lusaperidone																
NCE2																
Tamoxifen																
itraconazoie										L	L					
Furazolidone											L			L		
Gentamycin																
Praziquantel																
Ridogrel												L				
Acaftadine														L		
														L		
NCE3																
Ketoconazole																
Oxyphenisatin																
HP-beta-CD																
Sucrose																
Valproate																
Biotine																
NCE1																Additional testing
Clofibrate																Additional testing
No effect		Liver	necro	sis			P: Pr	ecipit	ation		Not to	ested		Leth	al	
		Wea	k liver	toxic	·			•						L: Le		

Conclusion on the zebrafish

- ➤ The zebrafish model is a suitable and promising model to screen for liver toxins. An acceptable sensitivity index was obtained.
- Human specific liver toxins were detected to be hepatotoxic to the zebrafish at low concentration levels.
- False positives were only obtained at high concentration levels.
- Phenotypic screen may be used as a first filter for liver toxicity.

Case by case, compounds are tested in the zebrafish for hepatotoxicity.

Acknowledgement

Mechanistic Toxicology

Hansen Erik

Mesens Natalie

Peters Annelieke

Spanhaak Steven

Steemans Margino

Verheyen Geert

DMPK

Snoeys Jan

Thanks

Questions?

