

In vitro screening of azole fungicides for antiandrogenic effects – comparison with in vivo effects

Camilla Taxvig, M. Sc.

Danish Institute for Food and Veterinary Research Dept. of Toxicology and Risk Assessment

eSi Meeting, September 29-30 2006, Alcante, Spain

Disposition

- Background
- Aim of the study
- Study design
- > The In Vitro assays
- > Results
- > Summery
- > Conclusion

Background

- Growing concern of permanent damage to the endocrine and nervous systems after exposure to even low levels of pesticides under development.
- > Azole fungicides are used in large amounts in the control of fungi in grain crops and to a lesser extent in vegetable and fruit production.
- The fungicides are relatively fat-soluble, and readily absorbed across the gastrointestinal cannel. Therefore, the public is exposed to the fungicides if residues exist in food products.
- > In general, the azole fungicides have a low acute toxicity but little is known about their potential health risks at low chronic exposures.

Background

Prochloraz has multiple mechanisms of action in vitro:

Aryl hydrocarbon (AhR) agonism $EC_{50} \sim 1 \mu M$ (Long et al., 2003)

Aromatase inhibition $IC_{50} = 0.3 \ \mu M$ (Vinggaard et al.,2000)

ER antagonism $IC_{50} \sim 25 \,\mu\text{M}$ (Andersen et al., 2002)

AR antagonism $IC_{50} = 4 \mu M$ (Andersen *et al.*, 2002)

Aim of the study

The results are part of a lager project, which main object is to investigate the effects of some frequently used azole fungicides on the endocrine system, including *in vitro* and *in vivo* examinations, and to assess whether *in vitro* assays can be used to predict *in vivo* effect.

Epoxiconazole

Tebuconazole

Study design

In Vitro Screens

AR reporter gene assay and steroid synthesis testing in H295R cells

CHO or human adrenocortical carcinoma cells

In Vivo Screens

In utero and perinatal exposure

Number of nipples and AGD recorded

(Typical endpoints to test for feminization of male offspring and masculinization of the female offspring)

Assay procedure for AR reporter gene assay

H295R cell assay - Test Design

Seeding

2x10⁵ cells/well in 24-well culture plates

Acclimatization

24h at 37°C and 5% CO₂

Exposure

48h at 37°C and 5% CO₂

Hormone Determination

Delfia time-resolved fluorescence kit

- Progesterone - Estradiol

Results

Steroid synthesis assay – H295R cells

Results - In Vitro

The AR reporter gene assay

Androgen receptor antagonism in vitro

Results - In Vivo

Effects on offspring after perinatal exposure

Hormone data GD 21 foetus

$\frac{17\alpha}{}$					
	hydroxyprogesterone (pg/testis)	Testosterone (ng/testis)	Progesterone (ng/testis)		
Control	1.95±0.54 (4)	1.75±0.71 (5)	0.037±0.025 (5)		
Tebuconazole 50 mg/kg	8.39±2.59* (7)	1.25±0.40 (7)	0.103±0.035* (7)		
Tebuconazole 100	6.59±3.88* (9)	0.88±0.46* (9)	0.084±0.063 (9)		
Epoxyconazole 15	1.76±1.36 (6)	1.62±0.59 (8)	0.029±0.019 (8)		
Epoxyconazole 50	0.94±0.48 (13)	1.11±0.56 (20)	0.027±0.019 (20)		

Data represent the mean ± SD

() = n; * significance level P <

0.05

Results - In Vivo

Anogenital distance PND 1

Nipple retention PND 13

Control T-50 T-100 E-15 E-50

Control T-50 T-100 E-15 E-50

only one pup

T-50: Tebuconazole 50mgkg, T-100: Tebuconazole 100mgkg, E-15: Epoxiconazole 15 mgkg, E-50: Epoxiconazole 50 mgkg

Summary

In Vitro

- Both tebuconazole and epoxiconazole inhibited testosterone and estradiol production, and increased progesterone production
- Tebuconazole and epoxiconazole proved to be antagonists of the androgen receptor

P: Prochloraz, T: Tebuconazole, E: Epoxiconazole					
	Р	Т	Е		
In vitro					
AR effects	Ţ	Ţ	Ţ		
Steroid synthesis					
Testosterone	Л	Д	Д		
Estradiol	Ĭ	Ĭ	Ĭ		
Progesterone	<u> </u>	<u> </u>	Î		
_In vivo					
AGD/cubic root of bw	Î	Î	Î		
Acora/eubic root of bw male	Ţ	\Leftrightarrow	\iff		
Nippels male	Î	1	$\qquad \Longleftrightarrow \qquad$		
Testosterone GD 21	Î	1	\Leftrightarrow		
Progesterone GD 21	Î	Î	\Leftrightarrow		

In vivo

- Tebuconazole caused an increase in testicular progesterone levels and a decrease in the testosterone levels.
- Tebuconazole increased the number of nipples in the male pups and increased AGD in female pups

Conclusions

- The results obtained *in vitro* are in good agreement with the effects observed *in vivo*.
- Tebuconazole and prochloraz showed antiandrogenic effects both *in vitro* and *in vivo*.
- Antiandrogenic effects were also seen for epoxiconazole *in vitro*, however the observed effects *in vivo* was not quite what might be predicted from the *in vitro* experiments, which

can be due to the fact, that the *in vitro* screen may be more sensitive than *in vivo*.

Thank you for your attention!