

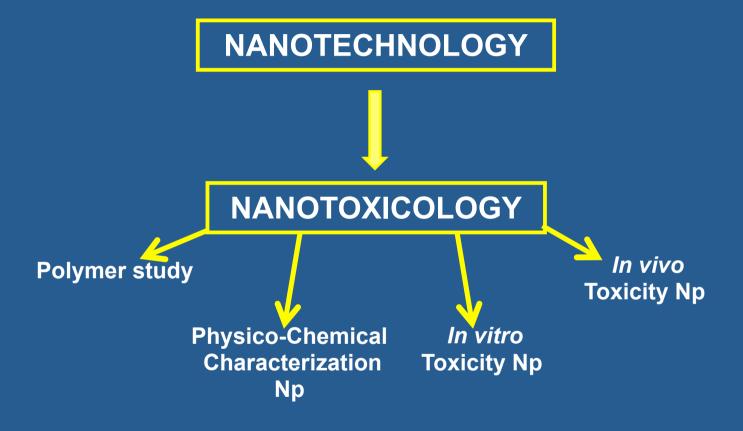
TOXICOLOGICAL STUDIES OF POLY (ANHYDRIDE) NANOPARTICLES FOR ORAL DRUG DELIVERY

PATRICIA OJER OJER

Department of Pharmacy and Pharmaceutical Technology¹ &

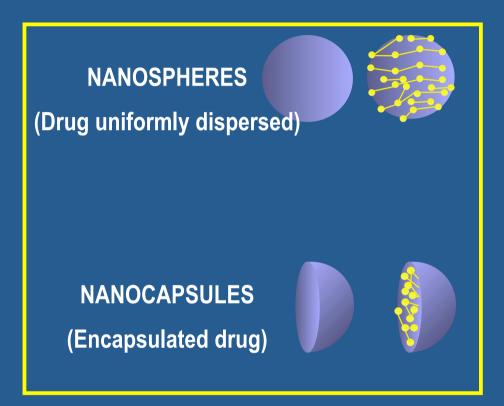
Department of Nutrition and Food Sciences, Physiology and Toxicology²

University of Navarra


Dr. Juan Manuel Irache¹

Dra. Adela López de Cerain²

NANOTOXICOLOGY



NANOPARTICLES

Solid particles colloidally dispersed sized between 1 and 1000 nm

APPLICATIONS

Drug delivery:

↓ dose administration

Minimize drug degradation

↑ efficacy

ORAL DRUG DELIVERY

Poly (anhydride) GANTREZ® AN 119

GANTREZ® AN 119

- Poly (methyl vinyl ether co maleic anhydride)
- Synthetic and biocompatible
- Low cost

PHYSICO-CHEMICAL PROPERTIES OF GANTREZ® AN 119

- Specific viscosity (1% MEK): 0.1 0.5
- Tg: 152 °C
- Viscosity of 5% w/w solution at 25°C: 15 mPas

Aplications of GANTREZ® AN 119

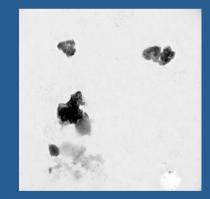
PHARMACEUTICAL APPLICATIONS

Dental adhesives

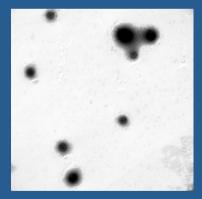
high quality bioadhesive performance

- Controlled-release coatings, enteric coatings and ostomy adhesives
 Excellent film-forming properties
- Transdermal patches, toothpastes, mouthwashes and transdermal gels
 Thickeners, complexing agents and hydrophilic colloids
- Specific bioadhesive ligand-nanoparticle conjugates for oral drug delivery

Fabrication of nanoparticles for oral drug delivery: Spanish patent, Arbos, P. et al, 2002



Poly (anhydride) nanoparticles



Gantrez® AN 119 polymer

Gantrez® AN 119 x12500

Gantrez® AN 119 Nanoparticles

Gantrez® AN 119 Nanoparticles x 5000

OBJECTIVES

- Preparation of different types of nanoparticles:
 - ✓ Conventional nanoparticles (NP)
 - ✓ Pegylated nanoparticles (PEG-NP)
 - ✓ Cyclodextrin nanoparticles (HPβCD-NP)
- Physico Chemical characterization of nanoparticles prepared:
 - ✓ Size
 - ✓ Surface charge
 - ✓ Shape
 - ✓ Stability
- Evaluate the cytotoxicity of Gantrez® AN poly (anhydride) nanoparticles by MTS assay using the Hep G2 cell line

Types of poly (anhydride) nanoparticles

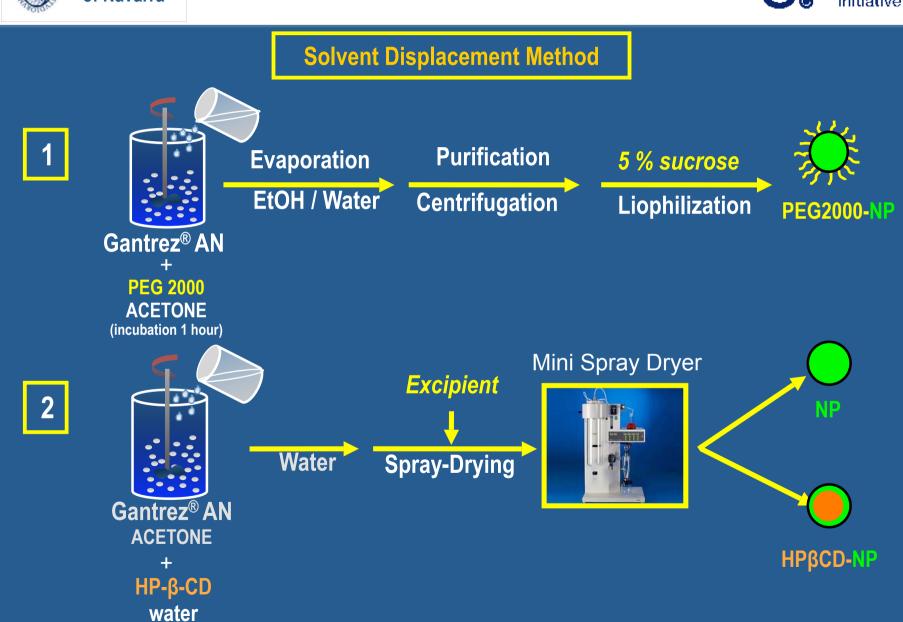
- Conventional nanoparticles (NP)
- ↑ Bioavailability of the presystemically metabolised drug

- Pegylated nanoparticles (PEG-NP)
- **↓interaction of nanoparticles with components of the lumen**

- Cyclodextrin nanoparticles (HPβCD-NP)
- ↑ Loading capacity of lipophilic drugs in the nanoparticles

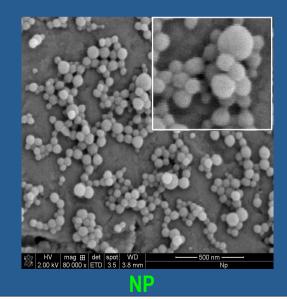
Types of poly (anhydride) nanoparticles

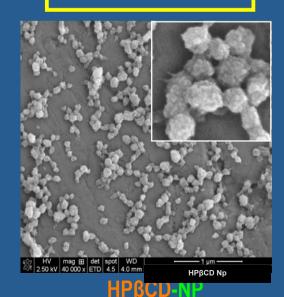
Fluorescence microscopic visualization

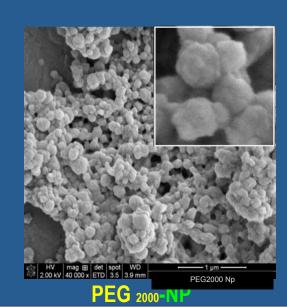


- <u>Poly (anhydride) nanoparticles</u> (NP) displayed a restricted location at the mucosa, mainly <u>on the mucus layer of the ileum</u>, and a <u>low ability to cross this</u> barrier
- Nanoparticles associated to hydroxypropyl-β-CD (HPβCD NP) and pegylated nanoparticles (PEG2000 NP) distributed homogeneously along the ileum mucosa and show high ability to establish bioadhesive interactions.

Nanoparticle preparation




Physico-Chemical Characterization



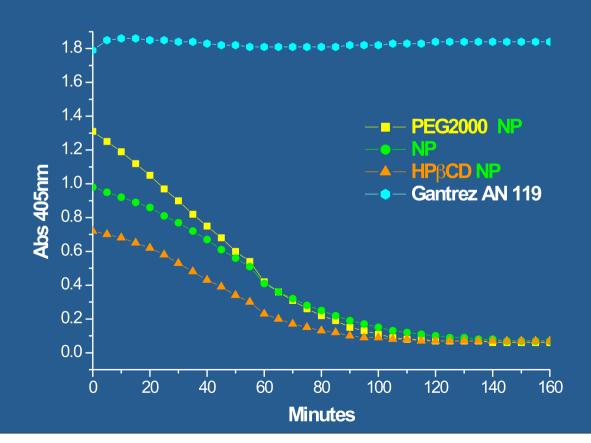
	Size (nm)	Zeta Potential (mV)	μg ligand/mg Np		
NP	192 ± 2	-56.8 ± 0.5			
HPβCD-NP	168 ± 1	-52.8 ± 0.5	219.3 ± 3.2		
PEG 2000- NP	205 ± 1	-57.1 ± 0.7	25.7 ± 0.5 /lean values ± SD (n=6)		

NP SEM IMAGES

In vitro toxicity

In cytotoxicity of nanoparticles it is important to:

- Develop the complete physico-chemical characterizacion of the nanoparticles
- Choose cell cultures sensitive to changes in their environment
- Controlling the experimental conditions



Stability studies

NANOPARTICLES STABILITY

- Measure Turbidity change as a function of time
- 15 mg NP/mL DPBS w/o Ca++/Mg++
- $t_{1/2} = 50$ minutes

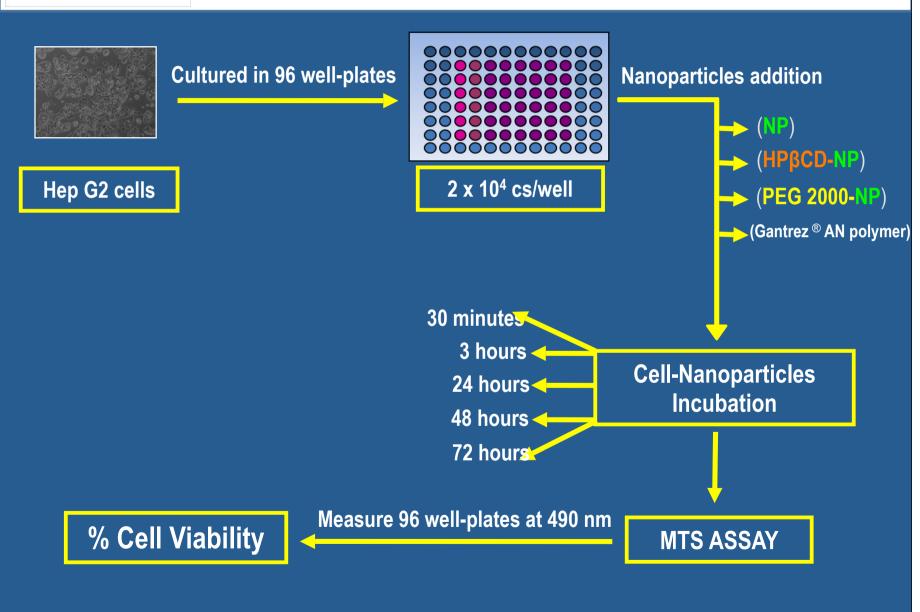
In vitro toxicity: MTS ASSAY

• Cell line: Hep G2 (Human liver adenocarcinoma)

Oral route

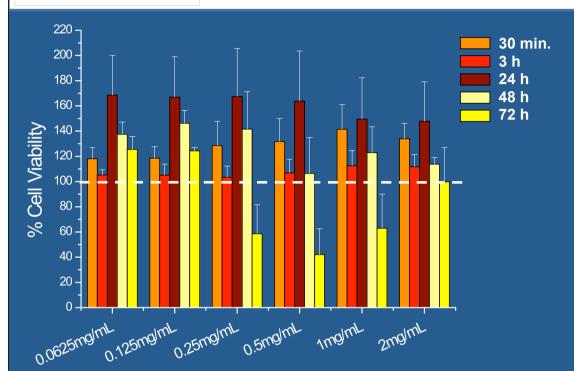
Cell viability: MTS ASSAY

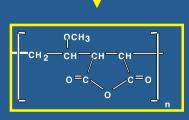
Sensitive to damage


("CellTiter 96® Aq_{ueous} Non-Radioactive Cell Proliferation Assay")

- Concentrations tested: 0.0625 0.125 0.25 0.5 1 and 2 mg/mL
- Incubation time: 30 minutes, 3, 24, 48 and 72 hours

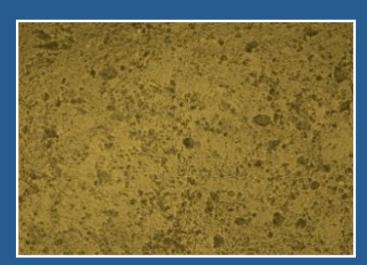
In vitro toxicity: MTS ASSAY




MTS results: Cell Viability

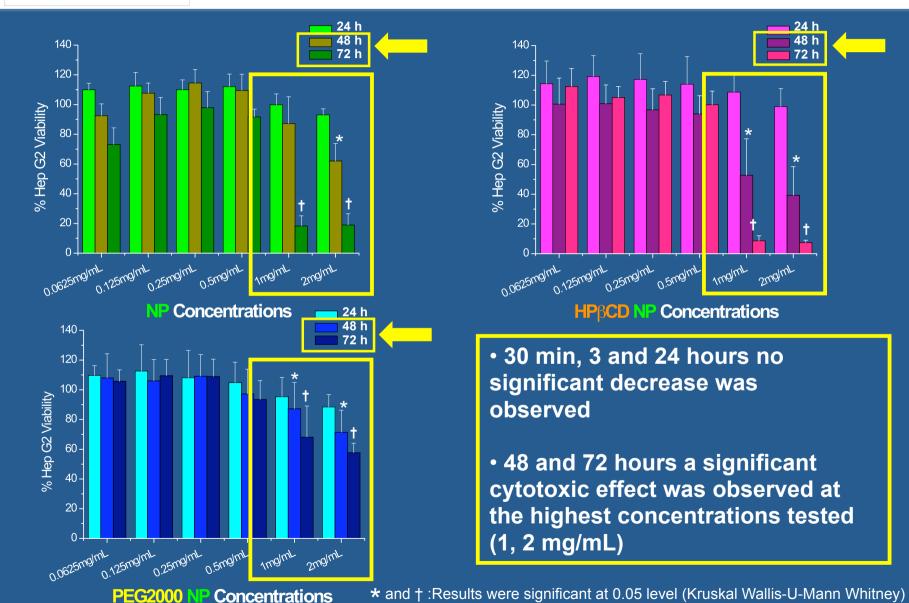
- •Cell viability increased more than 100%
- No dose-response relation was observed
- These results suggested polymer interference with the assay

GANTREZ AN 119 Concentrations



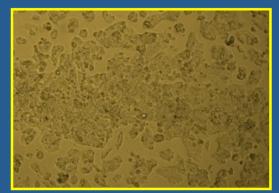
Hep G2 Images

CONTROL



For the poly (anhydride) Gantrez® AN, the morphology of the cells could not be observed probably due to the deposition of the polymer on the cells similar to a coating

MTS results: Cell Viability



Hep G2 Images

48 and 72 hours

Incubation times of 30 minutes, 3 and 24 hours did not affect the morphology nor the growth of Hep G2 cells.

On the contrary, at 48 and 72 hours, at the highest concentrations tested morphologycal changes and decrease in cell viability were observed.

Culture Medium pH

pH VALUES

INCUBATION TIMES	y (anhydride) ntrez® AN 119	NP	Н	PβCD NP	P	EG ₂₀₀₀	ME M
30 min	6	6. 5		7		7	7
3 h	6	6		6		6.5	7
24 h	6	6		6		6	6.5
the nanopai	were apprecia						
tested		7					
72 h	6-7	5		7.5		7.5	8

Conclusions

- The nanoparticles were prepared by two methods. The poly(anhydride) nanoparticles displayed a size of approximately 190 nm, a negative surface charge and a spherical shape with a homogeneous size distribution.
- The cytotoxicity studies demonstrated that the poly(anhydride) nanoparticles did not show any toxic effect in Hep G2 cells at 30 minutes, 3 and 24 hours.
- In contrast, at 48 and 72 hours significant cytotoxic effects were observed for 1 and 2 mg/mL nanoparticles concentrations.

Acknowledgements

- Departamento de Educación del Gobierno de Navarra
- Proyecto "Nanotecnologías y Medicamentos"

(Fundación Caja Navarra)

TOXICOLOGICAL STUDIES OF POLY (ANHYDRIDE) NANOPARTICLES FOR ORAL DRUG DELIVERY

PATRICIA OJER OJER

Department of Pharmacy and Pharmaceutical Technology¹ &

Department of Nutrition and Food Sciences, Physiology and Toxicology²

University of Navarra

Dr. Juan Manuel Irache¹

Dr. Adela López de Cerain²